
INTRODUCTION

This interface board has sixteen digital input/output channels which can be used as either input
or output as desired. In addition, there are eight analogue outputs with 6 bit resolution, one
analogue output with 8 bit resolution, and four analogue inputs of 8 bit resolution. If more digital
outputs are required, then the analogue outputs can be used by setting to minimum or
maximum output voltage. If there are too few inputs, then the analogue inputs may be used. In
this way it is very simple to track the state of a rotating switch by connecting in a different
voltage for every state. Please note that these extra input and output channels are not optically
isolated.
The number of inputs/outputs can be further expanded by connecting more cards together, up
to a maximum of four. Each card is given its own identification by means of a two pole DIP-
switch SW1 (see table below for channel numbering).

To connect the card to the computer the printer port is used (note that there is no need to install
an extra printer port as the printer can be connected to the interface card). Three lines from this
port are used, namely, "Select" (pin 13), "Autofeed" (pin 14) and "Select in" (pin 17).
Communication between the computer and interface card is by means of a serial link. One line
(Select in) serves as the clock signal, the second (Autofeed) as the data output, and the third
(Select) as the data input.

All communication routines are contained in a Dynamic Link Library (DLL) K8D.DLL. This
document describes all the DLL functions and procedures that are available for your application
programme. Using the DLL allows you to write custom Windows 9x, NT or XP based
applications in Visual C++, Delphi, Visual Basic, or any other 32-bit Windows application
development tool that supports calls to a DLL. Thus, there is no need to be concerned about the
communication protocol.

A complete overview of all procedures, functions and variables that are used by the "K8D.DLL"
follows. The example program can also be carefully studied in order to gain an insight as to how
to construct your customised application programmes.
Note that all examples are written for Delphi.

At the end of this document there are full declarations for the DLL function and procedures for
Delphi and Visual Basic.

TABLE 'SW1' SETTINGS

CARD NUMBER CHIP NUMBER CHANNEL NUMBERS

0 (OFF-OFF) IO-chip no: 0 IO-channels: 1...8
 IO-chip no: 1 IO-channels: 9...16
 DAC-chip no: 0 DAC-channels: 1...8
 AD-chip no: 0 AD-channels: 1...4
 DA-channel: 1

1 (OFF-ON) IO-chip no: 2 IO-channels: 17...24
 IO-chip no: 3 IO-channels: 25...32
 DAC-chip no: 1 DAC-channels: 9...16
 AD-chip no: 1 AD-channels: 5...8
 DA-channel: 2

2 (0N-OFF) IO-chip no: 4 IO-channels: 33...40
 IO-chip no: 5 IO-channels: 41...48
 DAC-chip no: 2 DAC-channels: 17...24
 AD-chip no: 2 AD-channels: 9...12
 DA-channel: 3

3 (ON-ON) IO-chip no: 6 IO-channels: 49...56
 IO-chip no: 7 IO-channels: 57...64
 DAC-chip no: 3 DAC-channels: 25...32
 AD-chip no: 3 AD-channels: 13...16
 DA-channel: 4

OVERVIEW OF THE 'K8D.DLL' VARIABLES

The application program has access to the the following variables via the k8d.dll:

 INITIAL
VARIABLE TYPE VALUE DESCRIPTION

DA Array[1..4] of Integer 0 Contains the data (value between 0

and 255) of the four 8-bit Digital to
Analogue converters

DAC Array[1..32] of Integer 0 Contains the data (value between 0
and 63) of the thirty two 6-bit
Digital to Analogue Converter
channels

IOconfig Array[0..7] of Integer $0FF Each bit contains the configuration
of the corresponding channels of
the eight IO-ports. Bit high (1) =
input; bit low (0) = output

IOdata Array[0..7] of Integer Each bit contains the status of the
respective channel of the eight IO-
ports. Bit high (1) = channel on; bit
low (0) = channel off

The global constants used in the following descriptions:

CONSTANT VALUE DESCRIPTION

MaxIOcard 3 Highest possible address of the interface card
MaxIOchip 7 Highest possible Input/Output chip number
MaxIOchannel 64 Highest possible Input/Output channel number
MaxDACchannel 32 Highest possible 6-bit Digital to Analogue

Converter channel number
MaxADchannel 16 Highest possible Analogue to Digital channel number
MaxDAchannel 4 Highest possible 8-bit Digital to Analogue channel

number

OVERVIEW OF 'K8D.DLL' PROCEDURES AND FUNCTIONS

8-bit Analogue to Digital converter procedures

ReadADchannel(Channelno) Reads the status of the analogue input-
channel

8-bit Digital to Analogue conversion procedures

OutputDAchannel(Channelno,Data) Sets the analogue output channel according
to the data

ClearDAchannel(Channelno) Sets the analogue output channel to
minimum

ClearAllDA Sets all analogue output channels to
minimum

SetDAchannel(Channelno) Sets the analogue output channel to
maximum

SetAllDA Sets all analogue output channels to
maximum

6-bit Digital to Analogue Conversion procedures

OutputDACchannel(Channelno,Data) Sets the analogue output channel according
to the data

ClearDACchannel(Channelno) Sets the analogue output channel to
minimum

ClearDACchip(Chipno) Sets the 8 analogue output channels of the
DAC-chip to minimum

ClearAllDAC Sets all analogue output channels to
minimum

SetDACchannel(Channelno) Sets the analogue output channel to
maximum

SetDACchip(Chipno) Sets the 8 analogue output channels of the
DAC-chip to maximum

SetAllDAC Sets all analogue output channels to
maximum

IO configuration procedures
ConfigAllIOasInput Configures all IO-channels as inputs
ConfigIOchipAsInput(Chipno) Configures all IO-channels of the IO-chip as

inputs
ConfigIOchannelAsInput(Channelno) Configures the IO-channel as input
ConfigAllIOasOutput Configures all IO-channels as outputs
ConfigIOchipAsOutput(Chipno) Configures all IO-channels of the IO-chip as

outputs
ConfigIOchannelAsOutput(Channel) Configures the IO-channel as output

Setting of IOdata & IO variables (the physical status of the IO-channels does not change)

UpdateIOdataArray(Chipno,Data) Sets the output status according to the data
(inputs do not change)

ClearIOchArray(Channelno) Clears the output status of the selected
channel (set low)

ClearIOdataArray(Chipno) Clears the output status of the channels of
the IO-chip (set low)

SetIOchArray(Channelno) Sets the output status of the selected
channel (set high)

SetIOdataArray(Chipno) Sets the output status of the channels of the
IO-chip (set high)

Output procedures

IOoutput(Chipno,Data) Sets the outputs of the IO-chip according to
the data (inputs do not change)

UpdateIOchip(Chipno) Sets the outputs of the IO-chip according to
the status of the 'IOdata' variable

UpdateAllIO Sets all outputs according to the status of the
'IOdata' variables

ClearIOchannel(Channelno) Clears the output channel
ClearIOchip(Chipno) Clears the output channels of the IO-chip
ClearAllIO Clears all output channels
SetIOchannel(Channelno) Sets the output channel
SetIOchip(Chipno) Sets the output channels of the IO-chip
SetAllIO Sets all output channels

Input procedures and functions

ReadIOchannel(Channelno) Reads the status of the input channel
ReadIOchip(Chipno) Reads the status of the input channels of the

IO-chip
ReadIOconficArray(Buffer) Reads the IO configuration data from the

DLL to the application program
ReadIOdataArray(Buffer) Reads the IO status data from the DLL to

the application program
ReadDACarray(Buffer) Reads the DAC data from the DLL to the

application program
ReadDAarray(Buffer) Reads the DA data from the DLL to the

application program

General procedures

SelectI2CprinterPort(Printer_no) Chooses the communication port
Start_K8000 Opens a link to the K8000 device
Stop_K8000 Closes the link to the K8000 device

'K8D.DLL' PROCEDURES AND FUNCTIONS

Start_K8000

Syntax
PROCEDURE Start_K8000;

Description
Initializes the communication routines for the K8000 card. Loads the drivers needed to
communicate via the LPT port. This procedure must be performed in the beginning of the
application program.

Example
 BEGIN
 Start_K8000;
 END;

Sop_K8000

Syntax
PROCEDURE Stop_K8000;

Description
Unloads the communication routines for K8000 card and unloads the drivers needed to
communicate via the PLT port. This is the last action of the application program before
termination.

Example
 BEGIN
 Stop_K8000;
 END;

SelectI2CprinterPort

Syntax
PROCEDURE SelectI2CprinterPort(Printer_no: Longint);

Parameter
Printer_no: Value between 0 and 2 given by the printer port to which the interface card is
connected.
0: printer port address is 0BC (hex)
1: printer port address is 378 (hex), usually the address of LPT1
2: printer port address is 278 (hex), usually the address of LPT2

Result
Communication between the PC and the K8000 card will occur via the selected LPT port
address.

Description
The printer port to be used must be specified at the start of your programme in order to run the
interface card so that the communication routines are carried out correctly. The default
designation is LPT1, but this can be changed using this procedure.

Example
 BEGIN
 SelectI2CprinterPort(1);
 // LPT1 address on mainboard is set to 378

 END;

ReadADchannel AD

Syntax
FUNCTION ReadADchannel(Channel_no: Longint):Longint;

Parameter
Channel_no: Value between 1 and 16 which corresponds to the AD channel whose status is to
be read.

Result
AD:
 The corresponding 'AD' data is read according to the status of the AD input.

Description
The input voltage of the selected 8-bit Analogue to Digital converter channel is converted to a
value which lies between 0 and 255 and registered in the respective 'AD' data variable.

Example

 var data: longint;
 BEGIN
 data := ReadADchannel(1);
 // AD channel 1 is read to variable 'data'
 END;

OutputDAchannel DA

Syntax
PROCEDURE OutputDAchannel(Channel_no: Longint; Data: Longint);

Parameter
Channel_no:Value between 1 and 4 which corresponds to the 8-bit DA channel number whose
data is to be changed.
Data: Value between 0 and 255 which is to be sent to the 8-bit Digital Analogue Converter .

Result
DA:
 The 'DA' data variable of the selected channel is set according to the data which is to be sent.
The selected DA-channel is changed.

Description
The indicated 8-bit Digital to Analogue Converter channel is altered according to the new data.
This means that the data corresponds to a specific voltage. The value 0 corresponds to a
minimum output voltage (0 Volt) and the value 255 corresponds to a maximum output voltage
(Vmax) which is set according to the preset on the interface board. A value of 'Data' lying in
between these extremes can be translated by the following formula : Data x Vmax/255.

Example

 BEGIN
 OutputDAchannel(1,127);
 // DA channel 1 is at 1/2 Vmax
 END;

ClearDAchannel DA

Syntax
PROCEDURE ClearDAchannel(Channel_no: Longint);

Parameter
Channel_no: Value between 1 and 4 which corresponds to the 8-bit DA channel number in
which the data is to be erased.

Result
DA:
 The 'DA' data variable of the selected DA-channel is set to minimum (0) .
The selected DA-channel is set to minimum output voltage (0 Volt).

Description
The selected 8-bit Digital to Analogue Converter channel is set to minimum output voltage (0
Volt).

Example
 BEGIN
 ClearDAchannel(1);
 // DA channel 1 is at Vmin
 END;

ClearAllDA DA

Syntax
PROCEDURE ClearAllDA;

Result
All DA-channels are set to minimum output voltage (0 Volt) .

Description
All DA-channels of the 8-bit Digital to Analogue Converters are set to minimum output voltage (0
Volt) .

Example
 BEGIN
 ClearAllDA;
 // All DA channels 1...4 are at Vmin
 END;

SetDAchannel DA

Syntax
PROCEDURE SetDAchannel(Channel_no: TDAchannel);

Parameter
Channel_no: Value between 1 and 4 which corresponds to the 8-bit DA channel number in
which the data is to be set to maximum.

Result
The selected DA-channel is set to maximum output voltage.

Description
The selected 8-bit Digital to Analogue Converter channel is set to maximum output voltage.

Example 15
 PROGRAM Set_DA_channel;
 USES I2C, WinCrt;
 BEGIN
 SetDAchannel(1);
 Writeln('Set DA channel 1 at Vmax');
 END;

SetAllDA DA

Syntax
PROCEDURE SetAllDA;

Result
All DA-channels are set to maximum output voltage.

Description
All DA-channels of the 8-bit Digital to Analogue Converters are set to maximum output voltage.

Example
 BEGIN
 SetAllDA;
 // All DA channels 1...4 are at Vmax
 END;

OutputDACchannel DAC

Syntax
PROCEDURE OutputDACchannel(Channel_no: Longint; Data: Longint);

Parameters
Channel_no: Value between 1 and 32 which corresponds to the 6-bit DAC channel number in
which the data is to be changed.
Data: Value between 0 and 63 which is to be sent to the 6-bit Digital Analogue Converter .

Result

The selected DAC-channel is updated.

Description
The indicated 6-bit Digital to Analogue Converter channel is modified with the new data. This
means that the data corresponds to a specific voltage. The value 0 corresponds to a minimum
output voltage (Vmin) and the value 63 corresponds to a maximum output voltage (Vmax) which
can be set using the preset on the interface board. A value of 'Data' lying in between these two
limits corresponds to a voltage according to the formula:
 Vmin + Data x (Vmax - Vmin)/63.

Example
 BEGIN
 OutputDACchannel(1,21);
 // DAC channel 1 is at Vmin + 1/3(Vmax-Vmin)
 END;

ClearDACchannel DAC

Syntax
PROCEDURE ClearDACchannel(Channel_no: Longint);

Parameter
Channel_no: Value between 1 and 32 which corresponds to the 6-bit DAC channel number in
which the data is to be erased.

Result
The selected DAC-channel is set to minimum output voltage (Vmin).

Description
The selected 6-bit Digital to Analogue Converter channel is set to minimum output voltage
(Vmin).

Example
 BEGIN
 ClearDACchannel(2);
 // DAC channel 2 is at Vmin
 END;

ClearDACchip DAC

Syntax
PROCEDURE ClearDACchip(Chip_no: Longint);

Parameter
Chip_no: Value between 0 and 3 which corresponds to the address of the 6-bit DAC chip in
which the 8 channels are to be set to minimum output voltage.

Result
The 8 DAC-channels of the indicated DAC-chip are set to minimum output voltage.

Description

The eight DAC-channels of the selected 6-bit Digital to Analogue Converter chip are set to
minimum (Vmin).

Example
 BEGIN
 ClearDACchip(0);
 // DAC channels 1...8 are at Vmin
 END;

ClearAllDAC DAC

Syntax
PROCEDURE ClearAllDAC;

Result
All DAC-channels are set to minimum output voltage.

Description
All DAC-channels of the 6-bit Digital to Analogue Converters are set to minimum output voltage
(Vmin) .

Example
 BEGIN
 ClearAllDAC;
 // All DAC channels 1...32 are at Vmin
 END;

SetDACchannel DAC

Syntax
PROCEDURE SetDACchannel(Channel_no: Longint);

Parameter
Channel_no: Value between 1 and 32 which corresponds to the 6-bit DAC channel number in
which the data is to be set to maximum.

Result
The selected DAC-channel is set to maximum output voltage.

Description
The selected 6-bit Digital to Analogue Converter channel is set to maximum output voltage.

Example
 BEGIN
 SetDACchannel(3);
 // Set DAC channel 3 at Vmax
 END;

SetDACchip DAC

Syntax
PROCEDURE SetDACchip(Chip_no: Longint);

Parameter
Chip_no: Value between 0 and 3 which corresponds to the address of the 6-bit DAC chip in
which the 8 channels are to be set to maximum output voltage.

Result
The 8 DAC-channels of the indicated DAC-chip are set to maximum output voltage.

Description
The eight DAC-channels of the selected 6-bit Digital to Analogue Converter chip are set to the
maximum output voltage (Vmax). The 'DAC' data variables of the respective DAC-channels are
likewise adjusted.

Example
 BEGIN
 SetDACchip(0);
 // DAC channels 1...8 are at Vmax
 END;

SetAllDAC DAC

Syntax
PROCEDURE SetAllDAC;

Result
All DAC-channels are set to maximum output voltage.

Description
All DAC-channels of the 6-bit Digital to Analogue Converters are set to maximum output voltage
(Vmax).

Example
 BEGIN
 SetAllDAC;
 // All DAC channels 1...32 are at Vmax
 END;

ConfigAllIOasInput IO

Syntax
PROCEDURE ConfigAllIOasInput;

Result
IOconfig: The 'IOconfig' variables for all Input/Output ports are given the value 255.

Description

All digital Input/Output channels (1...64) are configured as inputs. Each IO chip (0...7) contains a
variable in which the configuration of each IO pin is returned in the form of a data bit which is
not necessarily high. If this bit is high (1) it means that this is an input. Writing to this IO-channel
will have no effect. The status of the IO-channels can only be determined by an external signal.

Example
 BEGIN
 ConfigAllIOasInput;
 // All IO channels are now configured as inputs
 END;

ConfigIOchipAsInput IO

Syntax
PROCEDURE ConfigIOchipAsInput(Chip_no: Longint);

Parameter
Chip_no: Value between 0 and 7 which corresponds to the address setting of the Input/Output
chip in which all channels are configured as inputs.

Result
IOconfig: The 'IOconfig variable of the respective Input/Output chip is given the value 255.

Description
The 8 digital Input/Output channels of the selected IO chip are configured as inputs. Each IO
chip (0...7) contains a variable in which the configuration of each IO pin is returned in the form
of a data bit which is not necessarily high. If this bit is high (1) it means that it is an input. The
status of the IO-channels can only be determined by an external signal.

Example
 BEGIN
 ConfigIOchipAsInput(0);
 // The 8 channels from IO Chip 0 are now configured as inputs
 END;

ConfigIOchannelAsInput IO

Syntax
PROCEDURE ConfigIOchannelAsInput(Channel_no: Longint);

Parameter
Channel_no: Value between 1 and 64 which corresponds to the Input/Output channel that is to
be configured as an input.

Result
IOconfig:Via the channel number, the IO-chip number and bit number are determined in order
to set this bit high (1) in the 'IOconfig' variable.

Description
The selected Input/Output channel is configured as an input while the configuration of the other
channels remain unchanged. This occurs by making the correct bit high (1) in the configuration

variable of the respective IO chip. The status of the IO-channel can only be determined by an
external signal that is fed to it.

Example
 BEGIN
 ConfigIOchannelAsInput(1);
 // IO channel 1 is now configured as input');
 END;

ConfigAllIOasOutput IO

Syntax
PROCEDURE ConfigAllIOasOutput;

Result
IOconfig: The 'IOconfig' variables for all Input/Output ports are set low (0).

Description
All digital Input/Output channels (1...64) are configured as outputs. Each IO chip (0...7) contains
a variable in which the configuration of each IO pin is returned in the form of a data bit which is
not necessarily high. If this bit is low (0) it means an output. The status of the IO-channels are
determined by the value written to them.

Example
 BEGIN
 ConfigAllIOasOutput;
 // All IO channels are now configured as outputs
 END;

ConfigIOchipAsOutput IO

Syntax
PROCEDURE ConfigIOchipAsOutput(Chip_no: Longint);

Parameter
Chip_no: Value between 0 and 7 which corresponds to the address setting of the Input/Output
chip in which all channels are to be configured as outputs.

Result
IOconfig: The 'IOconfig variable of the respective Input/Output chip is set low (0).

Description
The 8 digital Input/Output channels of the selected IO chip are configured as outputs. Each IO
chip (0...7) contains a variable in which the configuration of each IO pin is returned in the form
of a data bit which is not necessarily high. If this bit is low (0) then it means an output. The status
of these IO-channels are determined by the value written to them.

Example
 BEGIN
 ConfigIOchipAsOutput(1);
 // The 8 channels from IO Chip 1 are now configured as outputs
 END;

ConfigIOchannelAsOutput IO

Syntax
PROCEDURE ConfigIOchannelAsOutput(Channel_no: Longint);

Parameter
Channel_no: Value between 1 and 64 which corresponds to the Input/Output channel that is to
be configured as an output .

Result
IOconfig:Via the channel number, the IO-chip number and bit number are determined in order
to set the 'IOconfig' variable low (0).

Description
The selected Input/Output channel is configured as an output while the configuration of the other
channels remain unchanged. This occurs by making the correct bit low (0) in the configuration
variable of the respective IO chip. The status of this IO-channel is determined by the value
written to it.

Example
 BEGIN
 ConfigIOchannelAsOutput(2);
 // IO channel 2 is now configured as output
 END;

UpdateIOdataArray IO

Syntax
PROCEDURE UpdateIOdataArray(Chip_no: Longint; Data: Longint);

Parameters
Chip_no: Value between 0 and 7 which corresponds to the address setting of the Input/Output
chip in which the data is to be changed.
Data: Value between 0 and 255 which is to be sent to the IO port (8 channels).

Result
IOdata: The 'IOdata' variable of the selected chip is updated with the new data such that the
status of the input channels remains unchanged.

Description
The status of the Input/Output ports are held in the 'IO data' variable. Each bit of this variable
corresponds to the status of an IO-channel. If the status of the 8 channels of an IO-chip is to be
changed then it is not advisable to immediately set the data in the 'IOdata' variable, because the
status of the input channels would no longer correspond to the physical status. In order to
prevent such conflict this procedure must be used.
Note that the 'IOdata' variable is just a buffer memory. When its value is changed the outputs do
not immediately change status. Status only changes when its value is sent to the IO-chip.

Example
 BEGIN

 ConfigIOchipAsOutput(0);
 UpdateIOdataArray(0,204);
 // 204 is in binary format 11001100
 // this sets channels 3,4,7,8 and clears channels 1,2,5,6
 END;

ClearIOchArray IO

Syntax
PROCEDURE ClearIOchArray(Channel_no: Longint);

Parameter
Channel_no: Value between 1 and 64 which corresponds to the Input/Output channel that is to
be cleared.

Result
IOdata: If selected channel is an output then the correct bit in the 'IOdata' variable of the
corresponding chip is set low (0).

Description
The status of the Input/Output ports is held in the 'IO data' variable. Each bit of this variable
corresponds to the status of an IO-channel. If a particular output of the IO-chip is to be cleared
then it is not advisable to immediately set the corresponding bit in the 'IOdata' variable to low. If
the selected channel has been configured as an input then its status would no longer correspond
to the physical status. In order to avoid such conflict this procedure must be used.
Note that the 'IOdata' variable is just a buffer memory. When its value is changed the outputs do
not immediately change status. This only occurs when this value is sent to the IO-chip.

Example
 BEGIN
 ConfigIOchipAsOutput(0);
 ConfigIOchannelAsInput(1); {channel 1 configured as input}
 ConfigIOchannelAsInput(2); {channel 2 configured as input}
 ConfigIOchannelAsInput(3); {channel 3 configured as input}
 ConfigIOchannelAsInput(4); {channel 4 configured as input}

 ClearIOchArray(2); // Clear channel 2 from IOdata array
 // The status of the inputs stays unchanged

 ClearIOchArray(8); // Clear channel 8 from IOdata array
 END;

ClearIOdataArray IO

Syntax
PROCEDURE ClearIOdataArray(Chip_no: Longint);

Parameter
Chip_no: Value between 0 and 7 which corresponds to the address setting of the Input/Output
chip in which the outputs are to be cleared.

Result
IOdata: The bits of the 'IOdata' variable of the selected chip are set low (0) but the bits that
correspond to inputs remain unchanged.

Description
The status of the Input/Output ports are held in the 'IOdata' variable. Each bit of this variable
corresponds to the status of an IO-channel. If the outputs of the IO-chip are to be cleared then it
is not recommended to immediately set the 'IOdata' variable to 0, because the status of the
input channels would no longer correspond to the physical status. In order to avoid such conflict
this procedure must be used.
Note that the 'IOdata' variable is just a buffer memory. When this changes its value the outputs
do not immediately change status. This occurs only when this value is sent to the IO-chip.

Example
 BEGIN
 ConfigIOchipAsOutput(0);
 ConfigIOchannelAsInput(1); {channel 1 configured as input}
 ConfigIOchannelAsInput(2); {channel 2 configured as input}
 ConfigIOchannelAsInput(3); {channel 3 configured as input}
 ConfigIOchannelAsInput(4); {channel 4 configured as input}
 ClearIOdataArray(0); // Clear channels 1 to 8 from IOdata array
 // The status of the inputs stays unchanged
 END;

SetIOchArray IO

Syntax
PROCEDURE SetIOchArray(Channel_no: Longint);

Parameter
Channel_no: Value between 1 and 64 which corresponds to the Input/Output channel that is to
be set.

Result
IOdata: If the selected channel is an output then the correct bit in the 'IOdata' variable of the
corresponding chip is set high (1).

Description
The status of the Input/Output ports is held in the 'IOdata' variable. Each bit of this variable
corresponds to the status of an IO-channel. If a particular output of the IO-chip is to be set then
it is not advisable to immediately set the corresponding bit in the 'IOdata' variable to high. If the
selected channel has been configured as an input then the status would no longer correspond to
the physical status. In order to prevent such conflict this procedure must be used.
Note that the 'IOdata' variable is just a buffer memory. When it changes its value the outputs do
not immediately change status. This only occurs when this value is sent to the IO-chip.

Example
 BEGIN
 ConfigIOchipAsOutput(0);
 ConfigIOchannelAsInput(1); {channel 1 configured as input}
 ConfigIOchannelAsInput(2); {channel 2 configured as input}
 ConfigIOchannelAsInput(3); {channel 3 configured as input}
 ConfigIOchannelAsInput(4); {channel 4 configured as input}
 SetIOchArray(1); // Set channels 1 from IOdata array
 SetIOchArray(5); // Set channels 5 from IOdata array
 // The status of the input channel 1 stays unchanged

 END;

SetIOdataArray IO

Syntax
PROCEDURE SetIOdataArray(Chip_no: Longint);

Parameter
Chip_no: Value between 0 and 7 that corresponds to the address setting of the Input/Output
chip in which the outputs are to be set.

Result
IOdata: The bits of the 'IOdata' variable of the selected chip are set high (1) but the bits that
correspond to inputs remain unchanged.

Description
The status of the Input/Output ports are held in the 'IOdata' variable. Each bit of this variable
corresponds to the status of an IO-channel. If the outputs of the IO-chip are to be set then it is
not advisable to immediately to load 255 in the 'IOdata' variable, because the status of the input
channels would no longer correspond to the physical status. In order to avoid such conflict this
procedure must be used.
Note that the 'IOdata' variable is just a buffer memory. When it changes its value the outputs do
not immediately change status. This only happens when this value is sent to the IO-chip.
The 'IO' variables of the respective IO-chip are likewise adjusted.

Example
 BEGIN
 ConfigIOchipAsOutput(0);
 ConfigIOchannelAsInput(1); {channel 1 configured as input}
 ConfigIOchannelAsInput(2); {channel 2 configured as input}
 ConfigIOchannelAsInput(3); {channel 3 configured as input}
 ConfigIOchannelAsInput(4); {channel 4 configured as input}
 SetIOdataArray(0); // Set channels 1 to 8 from IOdata array
 // The status of the inputs stays unchanged
 END;

IOoutput IO

Syntax
PROCEDURE IOoutput(Chip_no: Longint; Data: Longint);

Parameters
Chip_no: Value between 0 and 7 that corresponds to the address setting of the Input/Output
chip in which the data is to be changed.
Data: Value between 0 and 255 that is sent to the IO port (8 channels).

Result
IOdata: The 'IOdata' variable of the selected chip is updated with the new data such that the
status of the input channels remains unchanged.
The outputs of the selected IO-chip are updated.

Description
The channels of the selected IO-chip which have been configured as outputs are updated with
the status of the corresponding bits in the data parameter. A high (1) level means that the
output is set, and a low (0) level means that the output is cleared. The status of the inputs
remains unchanged.
The 'IOdata' and 'IO' variables of the respective IO-chip are likewise updated.

Example
 BEGIN
 ConfigIOchipAsOutput(1);
 IOoutput(1,128);
 // Output channels 9..15 are off, Output channel 16 is on
 END;

UpdateIOchip IO

Syntax
PROCEDURE UpdateIOchip(Chip_no: Longint);

Parameter
Chip_no: Value between 0 and 7 that corresponds to the address setting of the Input/Output
chip in which the outputs are to be changed.

Result
All outputs of the selected Input/Output chip are changed according to the status of the
corresponding bits in the 'IOdata' variables.

Description
All channels of the selected IO-chip that have been configured as outputs are changed
according to the status of the corresponding bits in the 'IOdata' array. A high (1) level means that
the output is set, a low (0) level means that the output is cleared. The status of the inputs remain
unchanged.

Example
 BEGIN
 ConfigIOchipAsOutput(1);
 UpdateIOdataArray(1,64); // channels 9...14 & 16 off, 15 on
 UpdateIOchip(1);
 // Output channels 9..14 & 16 are off, Output channel 15 is on
 END;

UpdateAllIO IO

Syntax
PROCEDURE UpdateAllIO;

Result
All outputs are changed according to the status of the corresponding bits in the 'IOdata'
variables.

Description

All channels of the IO-chips which have been configured as outputs are changed according to
the status of the corresponding bits in the 'IOdata' array. A high (1) level means that the output
is set, a low (0) level means that the output is cleared. The status of the inputs remain
unchanged.

Example
 BEGIN
 ConfigAllIOasOutput;
 UpdateIOdataArray(0,1); // channel 1 on
 UpdateIOdataArray(1,128); // channel 16 on
 UpdateAllIO;
 // Output channel 1 & 16 are on, Output channels 2..15 are off
 END;

ClearIOchannel IO

Syntax
PROCEDURE ClearIOchannel(Channel_no: Longint);

Parameter
Channel_no: Value between 1 and 64 which corresponds to the Input/Output channel that is to
be cleared.

Result
IOdata: If the selected channel is an output then the correct bit in the 'IOdata' variable of the
corresponding chip is set low (0).

Description
If the selected channel has been configured as an output then it is cleared. The status of the
inputs remain unchanged. The 'IOdata' and 'IO' variables are adjusted according to the new
status.

Example
 BEGIN
 ConfigIOchannelAsOutput(9);
 ClearIOchannel(9); // Output channel 9 is off
 END;

ClearIOchip IO

Syntax
PROCEDURE ClearIOchip(Chip_no: Longint);

Parameter
Chip_no: Value between 0 and 7 that corresponds to the address setting of the Input/Output
chip in which the outputs are to be cleared.

Result
IOdata: The bits in the 'IOdata' variable of the selected IO-chip that correspond to outputs are
set low (0) , those of the inputs remain unchanged.

Description

All channels of the selected Input/Output chip which have been configured as outputs are
cleared. The status of the inputs remain unchanged. The 'IOdata' and 'IO' variables are changed
according to the new status.

Example
 BEGIN
 ConfigIOchipAsOutput(1);
 ClearIOChip(1); // Output channels 9...16 are off
 END;

ClearAllIO IO

Syntax
PROCEDURE ClearAllIO;

Result
IOdata:The bits in the 'IOdata' variables that correspond to outputs are set low (0), those of the
inputs remain unchanged.
All outputs are cleared.

Description
All channels of the IO-chips that have been configured as outputs are cleared. The status of the
inputs remain unchanged. The 'IOdata' is changed according to the new status.

Example
 BEGIN
 ConfigAllIOasOutput;
 ConfigIOchannelAsInput(2); // channel 2 configured as input
 ClearAllIO;
 // All Output channels are off
 // Input channel 2 unchanged
 END;

SetIOchannel IO

Syntax
PROCEDURE SetIOchannel(Channel_no: Longint);

Parameter
Channel_no: Value between 1 and 64 which corresponds to the Input/Output channel that is to
be set.

Result
IOdata: If the selected channel is an output then the the correct bit in the 'IOdata' variable of
the corresponding chip is set high (1).
The selected output channel is set.

Description
If the selected channel has been configured as an output then it is set. The status of the inputs
remain unchanged. The 'IOdata' is changed according to the new status.

Example

 BEGIN
 ConfigIOchannelAsOutput(9);
 SetIOchannel(9); // Output channel 9 is on
 END;

SetIOchip IO

Syntax
PROCEDURE SetIOchip(Chip_no: Longint);

Parameter
Chip_no: Value between 0 and 7 which corresponds to the address setting of the Input/Output
chip in which the outputs are to be set.

Result
IOdata: The bits in the 'IOdata' variable of the selected IO-chip that correspond to outputs are
set high (1), those of the inputs remain unchanged.

Description
All channels of the selected Input/Output chip that have been configured as outputs are set. The
status of the inputs remain unchanged.

Example
 BEGIN
 ConfigIOchipAsOutput(1);
 SetIOchip(1); // Output channels 9...16 are on
 END;

SetAllIO IO

Syntax
PROCEDURE SetAllIO;

Result
IOdata: The bits in the 'IOdata' variables that correspond to outputs are set high (1), those of
the inputs remain unchanged.
IO:
 The 'IO' variables that correspond to outputs are set high (True). Those of the input channels
remain unchanged.
All outputs are set.

Description
All channels of the IO-chips that have been configured as outputs are set. The status of the
inputs remain unchanged. The 'IOdata' variables are changed according to the new status.

Example
 BEGIN
 ConfigAllIOasOutput;
 ConfigIOchannelAsInput(2); // channel 2 configured as input
 SetAllIO;
 // All Output channels are on
 // Input channel 2 unchanged

 END;

ReadIOchannel IO

Syntax
FUNCTION ReadIOchannel(Channel_no: Longint): Boolean;

Parameter
Channel_no: Value between 1 and 64 which corresponds to the Input/Output channel whose
status is to be read.

Result
IOdata: The bit in the 'IOdata' variable of the selected channel is changed according to the
status of that channel. A high (1) means that the channel has been set, a low (0) means that it
has been cleared.

Description
The status of the selected Input/Output channel is read and registered in the 'IOdata' variable.
The function returns the status of the channel.

Example
 var status: boolean;
 BEGIN
 ConfigIOChannelAsInput(2);
 status := ReadIOchannel(2); // Read Input channel 2
 END;

ReadIOchip IO

Syntax
FUNCTION ReadIOchip(Chip_no: Longint): Longint;

Parameter
Chip_no: Value between 0 and 7 which corresponds to the address setting of the Input/Output
chip in which the status of the inputs are to be read.

Result
IOdata: The bits in the 'IOdata' variable of the selected IO-chip are changed according to the
status of the IO-channels. A high (1) means that the channel has been cleared, a low (0) means
that it has been cleared.

Description
The status of all channels of the selected Input/Output chip are read and registered in the
'IOdata' variables. The function returns the status of the chip inputs.

Example
 var status: longint;
 BEGIN
 ConfigIOchipAsInput(0);
 status := ReadIOchip(0); // Read Input channels from chip 0
 END;

ReadIOconfigArray IO

Syntax
PROCEDURE ReadIOconfigArray(Buffer:Pointer);

Parameter
Buffer: A pointer to the array of long integers where the IO configuration data will be read.

Description
The IO configuration data array is read from the K8D.DLL to the application program.

Example
var // global variables
 IOconfig: ARRAY[0..MaxIOchip] OF Integer;

procedure TForm1.Button1Click(Sender: TObject);
var p:pointer;
i:integer;
s:string;
begin
 p:=@IOconfig; // Address of the data buffer for config array
 ReadIOconficArray(p); // Read the data from K8D.DLL
 memo1.clear;
 s:='';
 for i:=0 to MaxIOchip do s:=s +inttostr(IOconfig[i])+chr(9);
 memo1.lines.add(s); // Display the IO cofig data
end;

ReadIOconfigArray IO

Syntax
PROCEDURE ReadIOdataArray(Buffer:Pointer);

Parameter
Buffer: A pointer to the array of long integers where the IO data will be read.

Description
The IO status data array is read from the K8D.DLL to the application program.

Example
var // global variables
 IOdata: ARRAY[0..MaxIOchip] OF Integer;

procedure TForm1.Button1Click(Sender: TObject);
var p:pointer;
i:integer;
s:string;
begin
 p:=@IOdata; // Address of the data buffer for the data array
 ReadIOdataArray(p); // Read the data from K8D.DLL
 memo1.clear;
 s:='';
 for i:=0 to MaxIOchip do s:=s +inttostr(IOdata[i] and $ff)+chr(9);
 memo1.lines.add(s); // Display the IO data
end;

ReadDACarray DAC

Syntax
PROCEDURE ReadDACarray(Buffer:Pointer);

Parameter
Buffer: A pointer to the data array of long integers where the DAC data will be read.

Description
The DAC data array is read from the K8D.DLL to the application program.

Example
var // global variables
 DAC: ARRAY[1..MaxDACchannel] OF Integer;
procedure TForm1.Button1Click(Sender: TObject);
var p:pointer;
i:integer;
s:string;
begin
 p:=@DAC; // Address of the data buffer for the DAC array
 ReadDACarray(p); // Read the data from K8D.DLL
 memo1.clear;
 s:='';
 for i:=1 to MaxDACchannel do s:=s +inttostr(DAC[i] and $ff)+chr(9);
 memo1.lines.add(s); // Display the DAC dataend;

ReadIOconfigArray DA

Syntax
PROCEDURE ReadDAarray(Buffer:Pointer);

Parameter
Buffer: A pointer to the data array of long integers where the data will be read.

Description
The DA data array is read from the K8D.DLL to the application program.

Example
var // global variables
 DA: ARRAY[1..MaxDAchannel] OF Integer;

procedure TForm1.Button1Click(Sender: TObject);
var p:pointer;
i:integer;
s:string;
begin
 p:=@DA; // Address of the data buffer for the DA array
 ReadDAarray(p); // Read the data from K8D.DLL
 memo1.clear;
 s:='';
 for i:=1 to MaxDAchannel do s:=s +inttostr(DA[i] and $ff)+chr(9);
 memo1.lines.add(s); // Display the DA data
end;

Using the DLL in Delphi

Here is the declaration of some array variables, K8D.DLL procedures and functions and the two
most important procedures of the application program (FormCreate and FormClose).

var
 IOconfig: ARRAY[0..MaxIOchip] OF Integer;
 IOdata: ARRAY[0..MaxIOchip] OF Integer;
 DAC: ARRAY[1..MaxDACchannel] OF Integer;
 DA: ARRAY[1..MaxDAchannel] OF Integer;

implementation

{$R *.DFM}

{IO CONFIGURATION PROCEDURES}
PROCEDURE ConfigAllIOasInput; stdcall; external 'K8D.dll';
PROCEDURE ConfigAllIOasOutput; stdcall; external 'K8D.dll';
PROCEDURE ConfigIOchipAsInput(Chip_no: TIOchip); stdcall; external 'K8D.dll';
PROCEDURE ConfigIOchipAsOutput(Chip_no: TIOchip); stdcall; external 'K8D.dll';
PROCEDURE ConfigIOchannelAsInput(Channel_no: TIOchannel); stdcall; external 'K8D.dll';
PROCEDURE ConfigIOchannelAsOutput(Channel_no: TIOchannel); stdcall; external 'K8D.dll';

{UPDATE IOdata & IO ARRAY PROCEDURES}
PROCEDURE UpdateIOdataArray(Chip_no: TIOchip; Data:Longint); stdcall; external 'K8D.dll';
PROCEDURE ClearIOdataArray(Chip_no: TIOchip); stdcall; external 'K8D.dll';
PROCEDURE SetIOdataArray(Chip_no: TIOchip); stdcall; external 'K8D.dll';
PROCEDURE SetIOchArray(Channel_no: TIOchannel); stdcall; external 'K8D.dll';
PROCEDURE ClearIOchArray(Channel_no: TIOchannel); stdcall; external 'K8D.dll';

{OUTPUT PROCEDURES}
PROCEDURE IOoutput(Chip_no: TIOchip ; Data: Longint); stdcall; external 'K8D.dll';
PROCEDURE UpdateAllIO; stdcall; external 'K8D.dll';
PROCEDURE ClearAllIO; stdcall; external 'K8D.dll';
PROCEDURE SetAllIO; stdcall; external 'K8D.dll';
PROCEDURE UpdateIOchip(Chip_no: TIOchip); stdcall; external 'K8D.dll';
PROCEDURE ClearIOchip(Chip_no: TIOchip); stdcall; external 'K8D.dll';
PROCEDURE SetIOchip(Chip_no: TIOchip); stdcall; external 'K8D.dll';
PROCEDURE SetIOchannel(Channel_no: TIOchannel); stdcall; external 'K8D.dll';
PROCEDURE ClearIOchannel(Channel_no: TIOchannel); stdcall; external 'K8D.dll';

{6 BIT DAC CONVERTER PROCEDURES}
PROCEDURE OutputDACchannel(Channel_no: TDACchannel ; Data: Longint); stdcall; external
'K8D.dll';
PROCEDURE ClearDACchannel(Channel_no: TDACchannel); stdcall; external 'K8D.dll';
PROCEDURE SetDACchannel(Channel_no: TDACchannel); stdcall; external 'K8D.dll';
PROCEDURE ClearDACchip(Chip_no: TIOcard); stdcall; external 'K8D.dll';
PROCEDURE SetDACchip(Chip_no: TIOcard); stdcall; external 'K8D.dll';
PROCEDURE ClearAllDAC; stdcall; external 'K8D.dll';
PROCEDURE SetAllDAC; stdcall; external 'K8D.dll';

{8 BIT DA CONVERTER PROCEDURES}
PROCEDURE OutputDAchannel(Channel_no: TDAchannel ; Data: Longint); stdcall; external
'K8D.dll';
PROCEDURE ClearDAchannel(Channel_no: TDAchannel); stdcall; external 'K8D.dll';
PROCEDURE SetDAchannel(Channel_no: TDAchannel); stdcall; external 'K8D.dll';
PROCEDURE ClearAllDA; stdcall; external 'K8D.dll';
PROCEDURE SetAllDA; stdcall; external 'K8D.dll';

{GENERAL PROCEDURES}
PROCEDURE SelectI2CprinterPort(Printer_no: Longint); stdcall; external 'K8D.dll';

PROCEDURE Start_K8000; stdcall; external 'K8D.dll';
PROCEDURE Stop_K8000; stdcall; external 'K8D.dll';

{INPUT FUNCTIONS}
function ReadIOchip(Chip_no: TIOchip):longint; stdcall; external 'K8D.dll';
function ReadIOchannel(Channel_no: TIOchannel):boolean; stdcall; external 'K8D.dll';
function ReadADchannel(Channel_no:TADchannel):longint; stdcall; external 'K8D.dll'
PROCEDURE ReadIOconficArray(Buffer:Pointer); stdcall; external 'K8D.dll';
PROCEDURE ReadIOdataArray(Buffer:Pointer); stdcall; external 'K8D.dll';
PROCEDURE ReadDACarray(Buffer:Pointer); stdcall; external 'K8D.dll';
PROCEDURE ReadDAarray(Buffer:Pointer); stdcall; external 'K8D.dll';

procedure TForm1.FormCreate(Sender: TObject);
begin
 Start_K8000;

end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
 Stop_K8000;
end;

Using the DLL in Visual basic

Here is the declaration of the K8D.DLL procedures and functions, some array variables, and the
two most important procedures of the application program (Form_Load and Form_Terminate).

Option Explicit

'Declare use of the DLL
'K8D.DLL interfaces

'IO CONFIGURATION PROCEDURES
Private Declare Sub ConfigAllIOasInput Lib "k8d.dll" ()
Private Declare Sub ConfigAllIOasOutput Lib "k8d.dll" ()
Private Declare Sub ConfigIOchipAsInput Lib "k8d.dll" (ByVal Chip_no As Long)
Private Declare Sub ConfigIOchipAsOutput Lib "k8d.dll" (ByVal Chip_no As Long)
Private Declare Sub ConfigIOchannelAsInput Lib "k8d.dll" (ByVal Channel_no As Long)
Private Declare Sub ConfigIOchannelAsOutput Lib "k8d.dll" (ByVal Channel_no As Long)

'OUTPUT PROCEDURES
Private Declare Sub IOoutput Lib "k8d.dll" (ByVal Chip_no As Long, ByVal Data As Long)
Private Declare Sub UpdateAllIO Lib "k8d.dll" ()
Private Declare Sub ClearAllIO Lib "k8d.dll" ()
Private Declare Sub SetAllIO Lib "k8d.dll" ()
Private Declare Sub UpdateIOchip Lib "k8d.dll" (ByVal Chip_no As Long)
Private Declare Sub ClearIOchip Lib "k8d.dll" (ByVal Chip_no As Long)
Private Declare Sub SetIOchip Lib "k8d.dll" (ByVal Chip_no As Long)
Private Declare Sub SetIOchannel Lib "k8d.dll" (ByVal Channel_no As Long)
Private Declare Sub ClearIOchannel Lib "k8d.dll" (ByVal Channel_no As Long)

'INPUT FUNCTIONS AND PROCEDURES
Private Declare Function ReadIOchip Lib "k8d.dll" (ByVal Chip_no As Long) As Long
Private Declare Function ReadIOchannel Lib "k8d.dll" (ByVal Channel_no As Long) As
Boolean
Private Declare Sub ReadIOconficArray Lib "k8d.dll" (Array_Pointer As Long)
Private Declare Sub ReadIOdataArray Lib "k8d.dll" (Array_Pointer As Long)
Private Declare Sub ReadDACarray Lib "k8d.dll" (Array_Pointer As Long)
Private Declare Sub ReadDAarray Lib "k8d.dll" (Array_Pointer As Long)
'How to use these calls:
' ReadIOconficArray IOconfig(0)
' ReadIOdataArray IOdata(0)
' ReadDACarray DAC(1)
' ReadDAarray DA(1)

'6 BIT DAC CONVERTER PROCEDURES
Private Declare Sub OutputDACchannel Lib "k8d.dll" (ByVal Channel_no As Long, ByVal Data
As Long)
Private Declare Sub ClearDACchannel Lib "k8d.dll" (ByVal Channel_no As Long)
Private Declare Sub SetDACchannel Lib "k8d.dll" (ByVal Channel_no As Long)
Private Declare Sub ClearDACchip Lib "k8d.dll" (ByVal Chip_no As Long)
Private Declare Sub SetDACchip Lib "k8d.dll" (ByVal Chip_no As Long)
Private Declare Sub ClearAllDAC Lib "k8d.dll" ()
Private Declare Sub SetAllDAC Lib "k8d.dll" ()

'8 BIT DA CONVERTER PROCEDURES
Private Declare Sub OutputDAchannel Lib "k8d.dll" (ByVal Channel_no As Long, ByVal Data
As Long)
Private Declare Sub ClearDAchannel Lib "k8d.dll" (ByVal Channel_no As Long)
Private Declare Sub SetDAchannel Lib "k8d.dll" (ByVal Channel_no As Long)
Private Declare Sub ClearAllDA Lib "k8d.dll" ()
Private Declare Sub SetAllDA Lib "k8d.dll" ()

'8 BIT AD CONVERTER FUNCTION
Private Declare Function ReadADchannel Lib "k8d.dll" (ByVal Channel_no As Long) As
Boolean

'GENERAL PROCEDURES
Private Declare Sub SelectI2CprinterPort Lib "k8d.dll" (ByVal port As Long)
Private Declare Sub Start_K8000 Lib "k8d.dll" ()
Private Declare Sub Stop_K8000 Lib "k8d.dll" ()

'COMMON USED GLOBALS
Const MaxIOcard As Long = 3
Const MaxIOchip As Long = 7
Const MaxDACchannel As Long = 32
Const MaxDAchannel As Long = 4

'Declare variables
Dim IOconfig(0 To MaxIOchip) As Long

Dim IOdata(0 To MaxIOchip) As Long
Dim DAC(1 To MaxDACchannel) As Long
Dim DA(1 To MaxDAchannel) As Long

Private Sub Form_Load()
 Start_K8000
End Sub

Private Sub Form_Terminate()
 Stop_K8000
End Sub

