

TECHNICAL DOCUMENTATION
 COMMERCIAL CODE: HPS140 / HPS140i
 PRODUCT NAME:
 Handheld Pocket Scope

DATE: 19/07/2010
REVISION: 01

MANUFACTURED BY

Velleman NV
Legen Heirweg 33 9890 Gavere

Belgium

PREPARED BY	APPROVED BY
Stephan Santens	Date:
Date:19/07/2010	

PRODUCT DESCRIPTION:

HPS140 Handheld Pocket Scope

- $40 \mathrm{MS} / \mathrm{s}$ sampling rate
- 10 MHz analog bandwith (-3 or -4 dB in selected range)
- 0.1 mV sensitivity
- 1 mV to $20 \mathrm{~V} /$ div in 14 steps
- 250 ns to 1 hour/div time base in 32 steps
- ultra fast full auto set up option
- adjustable trigger level
- X and Y position signal shift
- DVM readout
- audio, power calculation (rms and peak)
- dBm, dBV, DC, rms ... measurements
- signal markers for voltage and time
- frequency readout (through markers)
- recorder function (roll mode)
- signal storage (2 memories)
- LCD backlight
- NiMH 4.8V batteries included
- included:
- USB charging adaptor
- insulated measurement probe x1/x10: PROBE60S with HPS140i

PRODUCT PICTURE:

?
(Probe with HPS140i)

APPLICABLE NORMATIONS

EMC

APP	STANDARDS	DESCRIPTION
x	EN55022	Radiated disturbance field, CISPR22 limits
	EN55014	Conducted disturbance at mains port, CISPR14 limits
	EN61000-4-2	Electrostatic discharge level (IEC801/2)
	EN61000-4-3	Radiated immunity level (IEC801/3)
	EN61000-4-4	Electrostatic fast transient / burst requirements (IEC801/4)
	EN61000-4-5	Surge immunity requirements (IEC801/5)
	ETS300683	EMC standard for short range device 9Khz -25GHz

LOW VOLTAGE / SAFETY

APP	STANDARDS	DESCRIPTION			
		IEC60669-2-			
1	IEC60065	Electronic switches ans associated extension units for household and similar fixed electrical installations.			
Audio, Video and similar apparatus, safety					
requirements			$	$	Safety requirements for measurement, control and
:---					
laboratory use					

SPECTRUM

APP	STANDARDS	DESCRIPTION
	ETS300-220	Electromagnetic compatibility and Radio spectrum matters

REMARKS / OTHER STANDARDS:

See battery addendum

Declaration of Conformity

Velleman Components

Legen Heirweg 33
9890 Gavere
Belgium
declare that the product

HPS140 / 140i Personal Scope

if used according the instructions included with the unit meet the directives in accordance with 89/336/EEC-EMC Directive and

EN 55022 Limits and methods of measurement of radio interference characteristics of information technology equipment (CISPR22 limits)

IEC 1010-1 Safety requirements for equipment for measurement, control and laboratory use (${ }^{*}$)
(*) if equipment used with safety measurement probes

FCC Part 15 Part B Unintentional radiators

For the manufacturer

Date: 19/07/2010

Signature: \qquad
Name: Stephan Santens
Technical Director

DIAGRAMS

PARTSLIST

AND

MEASUREMENT RESULTS

ASSEMBLY

UELLEMAN PHPSI 40́2

Assembly components
BPHPS140
CKSHPS140
DYWINDOWHPS140

Capacitors
1μ
$100 \mu / 16 \mathrm{~V}$
100N
100P
15P
20P/TRIM
2N2
2N2/200V
39P
$4 \mu 7$
47N/200V
47P
50P/TRIM
Chokes
470 $\mu \mathrm{H}$

Connectors

AJ218B
BNC057
HDR1X5
MOLEX48152-02
Diodes
BAS45AL
D4,D5
BAV70
KPA-3010SRCPRV
PRLL4001
Display assembly
64128KFCBC-3

IC's
74AHC1G66
LMV7239M5
LMV934MT
OPA2354UA
ADC0801S040TS
DSPIC33FJ64
D2,D3,D6
LD1
D1
SK2 DC jack
SK1
SK3
SK4
C53,C54
C6,C8...C11,C13...C20,C22...C24,C36...C41,C44...C46
C28
C12
CV2
C1
C5,C7
C2
C47...C52,C55
C4
C3,C21
CV1,CV3

L1

LCD1

Printed circuit board
PHPS140'3

Voltage regulators

TPS76633D
VR1,VR2

Relays

EDR301A0500 RY1...RY4

Resistors

100 (0603)

Rechargeable battery pack $4 \times$ AAA/800mAh NiMH for HPS140
Metal screen on bottom layer for HPS140
Display window (59x33x1mm Polycarbonate Clear Lexan)

100/1\% (0603)
100/TRIM
100K (0603)
10K (0603)
10K (1206)
15 (0603)
15/1\% (0603)
150 (0603)
1K3/1\% (0603)
1M (0603)
1R5 (0603)
22K (0603)
22K (1206)
2K4/1\% (0603)
2K5/TRIM
33/1\% (0603)
330 (1206)
39K (0603)
39K/1\% (0603)
3K3 (0603)
3K9 (0603)
3R3 (0603)
47 (0603)
47 (1206)
470/1\% (0603)
47K (0603)
47K/1\% (0603)
4K7 (0603)
4R7 (0603)
510/1\% (0603)
51K/1\% (0603)
680/1\% (0603)
68K (0603)
6R8 (1206)
750/1\% (0603)
910K/1\% (0603)

R6
RV1
R13
R18,R37,R51
R34
R48
R30
R8
R24,R26
R38,R49
R3
R14
R12
R4
RV2
R27
R2
R15
R9
R52...R55,R57
R33
R36
R35,R39...R47
R11
R28
R16,R21
R7
R32,R60,R61
R19,R20,R25
R5
R23
R31
R17,R22
R1
R29
R10

Switches

KRS0611
TS-13PLC

Transistors

BCP53T1
PMBT2222A
T1
T2...T5

Final assembly
BHPS140
Enclosure for HPS140 (4 parts)
HHPS140
Flexible Holster for HPS140

Packaging

USB adaptor
Manual

Radiation test measurement:

WORST POSITION TEST PROBE

Peak QPeak Sweep
Print date: 14/07/2010 14:57:21
Unit: $\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$ Distance from DUT: .05m 50081-1 Radiated Emission $200-1000 \mathrm{MHz}$

Notes:

Velleman instruments
HPS140 USB charger
Worst position
EN55022 Field strenght
Start: 30 MHz
Stop: 1 GHz

Peak QPeak Sweep RBW: 120 kHz
$\begin{array}{ll}\text { Print date: } 14 / 07 / 2010 & 14: 56: 22 \\ \text { Unit: } \mathrm{dB}(\mu \mathrm{V} / \mathrm{m}) & \text { Distance from DUT: } .05 \mathrm{~m}\end{array}$
Unit: $\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$ Distance from DUT: . 05 m 50081-1 Radiated Emission 200-1000 MHz

80,0

70,0

60,0

50,0

40,0

30,0

20,0

Peak QPeak Sweep
Print date: 14/07/2010 15:40:11
Unit: $\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$ Distance from DUT: .05 m
50081-1 Radiated Emission $200-1000 \mathrm{MHz}$

Notes:

Velleman instruments
HPS140 Handheld Pocket Scope
Worst position
EN55022 Field strenght
Start: 30 MHz
Stop: 1 GHz

Addendum:

Battery information:

Cyber-Power Electronic Corporation

BATTERY SPECIFICATION		Model: CYH-44AAA800
Basic		
	Type	Sealed Rechargeable Ni-MH
	Model	CYH-44AAA800
Size		AAA
Nominal Voltage (V)		1.2
Nominal Capacity (mAh)		800
Dimension	Diameter (mm)	$10.5{ }^{+0}-2.7$
	Height (mm)	$44.0{ }^{ \pm 0.5}$
Standard Charging	Current (mA)	80
	Time (h)	16
Quick Charging	Current (mA)	240
	Time (h)	4
Rapid Charging	Current (mA)	400
	Time (h)	2.2
Operation Temperature (${ }^{\circ} \mathrm{C}$)	Standard Charging	0-45
	Rapid Charging	10-40
	Discharging	-20~65
	Storage	$-20 \sim 35(\mathrm{RH} \leq 85 \%)$
Permanent Charging Current (mA)		27-45
Maximum Discharging Current (mA)(contimuous)		1600
Charge Inpedance ($\mathrm{m} \Omega$)		$\leqslant 40(1000 \mathrm{~Hz})$
Discharge Cut-off Voltage (V)		1.00
Charge Retention ($20^{\circ} \mathrm{C}$)		$\geqslant 60 \%$
Weight Approx. (g)		13.5

B. Test Report

Tests are carried out within one month of delivery under the following condition:

1. Ambient Conditions:

Room Temperature 20 $5^{\circ}{ }^{\circ} \mathrm{C}$
Relative Humidity $65 \%+20 \%$
2. Capacity Testing
2.1 Standard Charging
0.2 C discharge to $1.00 \mathrm{~V} / \mathrm{cell}$
0.1 C charging for 16 hours

Rest for 1 hours
0.2 C discharge to $1.00 \mathrm{~V} /$ cell

Within 3 charge/discharge cycles, the minimum capacity is no less than 760 mAh , the typical capacity is no less than 800 mAh

Doc. NO. : SDQ-T $1-1102$	Edition: A_{2} Checlved by	Date: Approved by;

MATERIAL SAFETY DATA SHEET

Section I - Product Identification

Product Name: Nickel Metal Hydride Battery (All models)
Trade Name: Cyber-Power Nominal Voltage: 1.2V
Chemical System: Nickel/Metal Hydride Designated for Recharge:

Section II - Hazardous Ingredients

IMPORTANT NOTE: The battery cell is contained in a hermetically-sealed case, designed to withstand temperatures and pressures encountered during normal use. As a result, during normal use, hazardous materials are fully contained inside the battery cell. The battery cell should not be opened or exposed to heat because exposure to the following ingredients contained within could be harmful under some circumstances. The following information is provided for the user's information only.

Chemical Name	Content (approx. wt\%)	CAS number:
Nickel	4.9\%	7440-02-0
Nickel hydroxide	23.9\%	12054-48-7
Cobalt Monoxide	2.7\%	7440-48-4
Teflon (PTFE)	0.4\%	9002-84-0
Mischmetal Powder $(\mathrm{Co}+\mathrm{Ni}+\mathrm{La}+\mathrm{Ce})$	34.3\%	Co: 7440-48-4 $\mathrm{Ni}: 7440-02-0$ La: 7439-91-0 Ce: 7440-45-1
Copper	5.4\%	7440-50-8
Nickel (plated steel)	16.9\%	$\text { 7439-89-6 (} \quad 12054-48-$ 7)
Rubber	0.3\%	25038-36-2
Nylon	0.6\%	32131-17-2
Polypropylene	2.0\%	9003-07-0
$\mathrm{KOH}+\mathrm{NaOH}+\mathrm{LiOH}$	3.2\%	$\begin{aligned} & 1310-58-3 \\ & 1310-73-2 \\ & 1310-66-3 \end{aligned}$
H2O (Water)	5.5\%	7732-18-5

Section III-Physical Data for Battery

Melting Point (。F) NA	Boiling Point (。F) NA	\% Volatile volume NA
Vapor Pressure (mm Hg) NA	Evaporation Rate	Vapor Density (Air=1) NA
Specific Gravity (H2O) NA	Solubility in Water NA	Appearance and Odor No Ordor

Section IV-Fire and Explosion Hazard Data

Flash Point: NA Lower Explosive Limit: NA Upper Explosive Limit: NA

Extinguishing Media: Any class of extinguishing medium may be used on the batteries or their packing material.

Special Fire Fighting Procedures: Exposure to temperatures of above 212 deg. F can cause venting of the liquid electrolyte. Internal shorting could also cause venting of the electrolyte. There is potential exposure to iron, nickel, cobalt, rare earth metals (cerium, lanthanum neodymium, and praseodymium), manganese, and aluminum fumes during fire; use self-contained breathing apparatus.

Section V- Health Hazard Data

Threshold Limit Values: See Section II
Effects of a Single (Acute) Overexposure:
Inhalation: During Normal use inhalation is an unlikely route of exposure due to containment of hazardous materials within the battery case. However, should the batteries be exposed to extreme heat or pressure causing a breach in the battery cell case, exposure to the constituents may occur. Inhalation of cobalt dusts may result in pulmonary burns.

Ingestion: If the battery case is breached in the digestive tract, the electrolyte may cause localized burns.
Skin Absorption: No evidence of adverse effects from available data.
Skin Contact: Exposure to the electrolyte contained inside the battery may result in chemical burns. Exposure to nickel may cause dermatitis in some sensitive individuals.

Eye Contact: Exposure to the electrolyte contained inside the battery may result in severe irritation and chemical burns.

Carcinogenicity:
Nickel has been identified by the National Toxicology Program (NTP) as reasonably anticipated to be a carcinogen. Cobalt has been identified by IARC as a 2B carcinogen.

Other Effects of Repeated (Chronic) Exposure:
Chronic overexposure to nickel may result in cancer; dermal contact may result in dermatitis in sensitive individuals.

Medical Conditions Aggravated by Overexposure:
A knowledge of the available toxicology information and of the physical and chemical and chemical properties of the material suggests that overexposure is unlikely to aggravate existing medical conditions.

Emergency and First Aid Procedures:
Swallowing: Do not induce vomiting. Seek medical attention immediately.
Skin: If the internal cell material of an opened battery cell comes into contact with the skin, immediately flush with water for at least 15 minutes.

Inhalation: If potential for exposure to fumes or dusts occurs, remove immediately to fresh air and seek medical attention.

Eyes: If the contents from an opened battery come into contact with the eyes, immediately flush eyes with water continuously for at least 15 minutes. Seek medical attention.

Section VI - Reactivity Data

The batteries are stable under normal operating conditions.

Hazardous polymerization will not occur.

Hazardous decomposition products: oxides of nickel, cobalt, manganese, lanthanum, and cerium.
Conditions to avoid: heat, open flames, sparks, and moisture.
Potential incompatibilities (i.e., material to avoid contact with): The battery cells are encased in a non-reactive container; however, if the container is breached, avoid contact of internal battery components with acids, aldehydes, and carbonate compounds.

Section VII - Spill and Leak Procedures

Spill and leaks are unlikely because cells are contained in a hermetically-sealed case. If the battery case is breached, don protective clothing that is impervious to caustic materials and absorb or pack spill residues in inert material. Dispose in accordance with applicable state and federal regulations.

Section VIII-Safe Handling and Use (Personal Protective Equipment)

Ventilation Requirements: Not required under normal use.
Respiratory Protection: Not required under normal use.
Eye Protection: Not required under normal use.
Gloves: Not required under normal use.

Section IX- Precautions for Safe Handling and Use

Storage: Store in a cool place, but prevent condensation on cell or battery terminals. Elevated temperatures may result in reduced battery life. Optimum storage temperatures are between $-31 。 \mathrm{~F}$ and 95。F.

Mechanical containment: If there are special encapsulation or sealing requirements, consult Cyber-Power about possible cell hazard precautions or limitations.

Handling: Accidental short circuit will bring high temperature elevation to the battery as well as shorten the battery life. Be sure to avoid prolonged short circuit since the heat can burn attendant skin and even rupture of the battery cell case. Batteries packaged in bulk containers should not be shaken. Metal covered tables or belts used for assembly of batteries into devices can be the source of short circuits; apply insulating material to assembly work surface.
If soldering or welding to the case of the battery is required, consult Cyber-Power for proper precautions to prevent seal damage or external short circuit.

Charging: This battery is designed for recharging. A loss of voltage and capacity of batteries due to self-discharge during prolonged storage is unavoidable. Charge battery before use. Observe the specified charge rate since higher rates can cause a rise in internal gas pressure, which may result in damaging heat generation or cell rupture and/or venting.

Labeling: If normal label warning is not visible, it is important to provide a device label stating:
CAUTION: Do not dispose in fire, mix with other battery types, charge above specified rate, connect improperly, or short circuit, which may result in overheating, explosion or leakage of cell contents.

Section X- Recycling and Disposal

Cyber-Power encourages battery recycling. Our Nickel Metal Hydride batteries are not defined by the government as hazardous waste and are safe for disposal in the normal municipal waste stream. These batteries, however, do contain recyclable materials.

DO NOT INCINERATE or subject battery cells to temperatures in excess of 212 deg. F. Such treatment can cause cell rupture.

Section XI - Transportation

Sealed Nickel Metal Hydride batteries are considered to be "dry cell" batteries and are not subject to dangerous goods regulation for the purpose of transportation by the U. S. Department of Transportation, the International Civil Aviation Organization, the International Air Transport Association or the International Maritime Dangerous Goods regulations. The only DOT requirements for shipping Nickel Cadmium batteries is Special Provision 130 which states: "Batteries, dry are not subject to the requirements of this subchapter only when they are offered for transportation in a manner that prevents the dangerous evolution of heat (for example, by the effective insulation of exposed terminals)." IATA requires that batteries being transported by air must be protected from shortcircuiting and protect from movement that could lead to short-circuiting.

Velleman NV
Legen Heirweg 33
9890 Gavere Belgium

HPS140-Technical Doc V2.doc 2011

