
Java access to K8055N/VM110N boards

Java applications can access the functions of K8055D.DLL by using a wrapper K8055NW_x64.DLL as a link.
The wrapper is written in C++. It converts Java calls into C calls and forwards them to the K8055D.DLL. The
K8055N.java is a demo program including possibility to test all the functions of the original K8055D.DLL.

K8055NW_x64.DLL
K8055N.java

K8055N.class

Java application Wrapper
PC

K8055N
Device

K8055D.DLL
USB Cable

The source codes for the Java application and for the wrapper are available.

The Java application is written using NetBeans IDE 8.1 and the wrapper is written using Microsoft Visual
Studio Express Visual C++ 2012.

Both of the DLLs (K8055NW_x64.DLL and K8055D.DLL) are 64-bit programs.
Place both of them to Windows System32 folder.

Set the PATH environment variable if you want to be able to conveniently run the executables (javac.exe,
java.exe, javah.exe) from any directory without having to type the full path of the command. Add the location
of the bin folder of the JDK installation for the PATH variable. Typically, this full path looks something like
C:\Program Files\Java\jdk1.8.0_60\bin.

To run this Java application from the command line you can use for example:
java -jar "C:\Users\<username>\Documents\NetBeansProjects\K8055N\dist\K8055N.jar"
To get it working, use the full path to \K8055N.jar.

Functions of the K8055NW_x64.DLL

OpenDevice

Syntax
int OpenDevice(int CardAddress);

Parameter
CardAddress: Value between 0 and 3 which corresponds to the jumper (SK5, SK6)
setting on the K8055N board.

Result
Int: If succeeded the return value will be the card address read from the K8055N
hardware.
Return value -1 indicates that K8055N card was not found.
Return value -10 indicates that K8055D.DLL was not found.

Description
Opens the communication link to the K8055N card. Loads the drivers needed to
communicate via the USB port. This procedure must be performed before any attempts to
communicate with the K8055N card.
This function can also be used to selects the active K8055N card to read and write the
data. All the communication routines after this function call are addressed to this card until
the other card is selected by this function call.

Example
System.out.println("Enter the card address [0..3].");
CardAddress = reader.nextInt();
h = new K8055N().OpenDevice(CardAddress);
if (h == -10)
 System.out.println("Library K8055D.DLL not found.");
if (h >= 0)
 System.out.println("Card "+ CardAddress +" opened.");
else
{
 System.out.println("Card "+ CardAddress +" not found.");
 sel = 0;
}

SearchDevices

Syntax
int SearchDevices();

Description
Using this function all the K8055N cards can be opened. No need to use OpenDevice.
This function returns all the connected K8055N devices on the computer. The returned
value is a bit field.
Returned value

• Bin 0000, Dec 0 : No devices was found
• Bin 0001, Dec 1 : Card address 0 was found.
• Bin 0010, Dec 2 : Card address 1 was found.
• Bin 0100, Dec 4 : Card address 2 was found.
• Bin 1000, Dec 8 : Card address 3 was found.
Example : return value 9 = devices with address 0 and 3 are connected.

Example

int cards = new K8055N().SearchDevices();
if (cards == 0) System.out.println("No devices was found.");
if ((cards & 1) > 0) System.out.println("Card address 0 was found.");
if ((cards & 2) > 0) System.out.println("Card address 1 was found.");
if ((cards & 4) > 0) System.out.println("Card address 2 was found.");
if ((cards & 8) > 0) System.out.println("Card address 3 was found.");

SetCurrentDevice

Syntax
int SetCurrentDevice(int lngCardAddress);

Description
The function to set the current controlled device.

Parameter
Address: Value 0 to 3, which corresponds to the device address.

Result
Int: The returned value is the device address. If this value is –1, no device with the address
parameter was found.

Example
System.out.println("Enter device address [0..3].");
CardAddress = reader.nextInt();
new K8055N().SetCurrentDevice(CardAddress);

CloseDevice

Syntax
void CloseDevice();

Description
Unloads the communication routines for K8055N cards and unloads the driver needed to
communicate via the USB port. This is the last action of the application program before
termination.

Example
new K8055N().CloseDevice();

ReadAnalogChannel

Syntax
int ReadAnalogChannel(int Channel);

Parameter
Channel: Value between 1 and 2 which corresponds to the AD channel whose status is to
be read.

Result
Int: The corresponding Analog to Digital Converter data is read.

Description
The input voltage of the selected 8-bit Analog to Digital converter channel is converted to a
value which lies between 0 and 255.

Example
System.out.println("Enter analog channel number [1..2].");
Channel = reader.nextInt();
i = new K8055N().ReadAnalogChannel(Channel);
System.out.println("Analog Ch"+Channel+" = "+i);

ReadIAllAnalog

Syntax
void ReadAllAnalog(int[] DataIn);

Parameter
DataIn: Pointer to an array of two 32-bit integers where the data will be read.

Description
The status of both Analog to Digital Converters are read to an array of 32-bit integers.

Example
int[] DataIn = new int[2];
new K8055N().ReadAllAnalog(DataIn);
System.out.println("Analog Ch1 = "+DataIn[0]);
System.out.println("Analog Ch2 = "+DataIn[1]);

OutputAnalogChannel

Syntax
void OutputAnalogChannel(int Channel, int Data);

Parameters
Channel: Value between 1 and 2 which corresponds to the 8-bit DA channel number
whose data is
to be set.
Data: Value between 0 and 255 which is to be sent to the 8-bit Digital to Analog
Converter.

Description
The indicated 8-bit Digital to Analog Converter channel is altered according to the new
data. This means that the data corresponds to a specific voltage. The value 0 corresponds
to a minimum output voltage (0 Volt) and the value 255 corresponds to a maximum output
voltage (+5V). A value of 'Data' lying in between these extremes can be translated by the
following formula : Data / 255 x 5V.

Example
System.out.println("Enter analog channel number [1..2].");
Channel = reader.nextInt();
System.out.println("Enter data to output [0..255].");
Data = reader.nextInt();
new K8055N().OutputAnalogChannel(Channel, Data);

OutputAllAnalog

Syntax
void OutputAllAnalog(int Data1, int Data2);

Parameters
Data1, Data2: Value between 0 and 255 which is to be sent to the 8-bit Digital to Analog
Converter.

Description
Both 8-bit Digital to Analog Converter channels are altered according to the new data. This
means that the data corresponds to a specific voltage. The value 0 corresponds to a
minimum output voltage (0 Volt) and the value 255 corresponds to a maximum output
voltage (+5V). A value of 'Data1' or 'Data2' lying in between these extremes can be
translated by the following formula : Data / 255 * 5V.

Example
System.out.println("Enter data to output Ch1 [0..255].");
Data1 = reader.nextInt();
System.out.println("Enter data to output Ch2 [0..255].");
Data2 = reader.nextInt();
new K8055N().OutputAllAnalog(Data1, Data2);

ClearAnalogChannel

Syntax
void ClearAnalogChannel(int Channel);

Parameter
Channel: Value between 1 and 2 which corresponds to the 8-bit DA channel number in
which the data is to be erased.

Description
The selected DA-channel is set to minimum output voltage (0 Volt).

Example
System.out.println("Enter analog channel number to clear [1..2].");
Channel = reader.nextInt();
new K8055N().ClearAnalogChannel(Channel);

ClearAllAnalog

Syntax
void ClearAllAnalog();

Description
Both DA-channels are set to minimum output voltage (0 Volt) .

Example
new K8055N().ClearAllAnalog();

SetAnalogChannel

Syntax
void SetAnalogChannel(int Channel);

Parameter
Channel: Value between 1 and 2 which corresponds to the 8-bit DA channel number in
which the data is to be set to maximum.

Description
The selected 8-bit Digital to Analog Converter channel is set to maximum output voltage.

Example
System.out.println("Enter analog channel number to set [1..2].");
Channel = reader.nextInt();
new K8055N().SetAnalogChannel(Channel);

SetAllAnalog

Syntax
void SetAllAnalog();

Description
All channels of the 8-bit Digital to Analog Converters are set to maximum output voltage.

Example
new K8055N().SetAllAnalog();

WriteAllDigital

Syntax
void WriteAllDigital(int Data);

Parameter
Data: Value between 0 and 255 that is sent to the output port (8 channels).

Description
The channels of the digital output port are updated with the status of the corresponding
bits in the data parameter. A high (1) level means that the microcontroller IC3 output is set,
and a low (0) level means that the output is cleared.

Example
System.out.println("Enter data to output [0..255].");
Data = reader.nextInt();
new K8055N().WriteAllDigital(Data);

ClearDigitalChannel

Syntax
void ClearDigitalChannel(int Channel);

Parameter
Channel: Value between 1 and 8 which corresponds to the output channel that is to be
cleared.

Description
The selected channel is cleared.

Example
System.out.println("Enter digital channel to clear [1..8].");
Channel = reader.nextInt();
new K8055N().ClearDigitalChannel(Channel);

ClearAllDigital

Syntax
void ClearAllDigital();

Result
All digital outputs are cleared.

Example
new K8055N().ClearAllDigital();

SetDigitalChannel

Syntax
void SetDigitalChannel(int Channel);

Parameter
Channel: Value between 1 and 8 which corresponds to the output channel that is to be
set.

Description
The selected digital output channel is set.

Example
System.out.println("Enter digital channel to set [1..8].");
Channel = reader.nextInt();
new K8055N().SetDigitalChannel(Channel);

SetAllDigital

Syntax
void SetAllDigital();

Description
All the digital output channels are set.

Example
new K8055N().SetAllDigital();

ReadDigitalChannel

Syntax
bool ReadDigitalChannel(int Channel);

Parameter
Channel: Value between 1 and 5 which corresponds to the input channel whose status is
to be read.

Result
bool: TRUE means that the channel has been set and FALSE means that it has been
cleared.

Description
The status of the selected Input channel is read.

Example
System.out.println("Enter digital channel to read [1..5].");
Channel = reader.nextInt();
boolean b = new K8055N().ReadDigitalChannel(Channel);
System.out.println("Digital Ch"+Channel+" = "+b);

ReadAllDigital

Syntax
int ReadAllDigital();

Result
int: The 5 LSB correspond to the status of the digital input channels. A high (1) means
that the channel is HIGH, a low (0) means that the channel is LOW.

Description
The function returns the status of the digital inputs.

Example
Data = new K8055N().ReadAllDigital();
System.out.println("Digital input data = "+Data);

ResetCounter

Syntax
void ResetCounter(int CounterNr);

Parameter
CounterNr: Value 1 or 2, which corresponds to the counter to be reset.

Description
The selected pulse counter is reset.

Example
System.out.println("Enter counter to reset [1..2].");
CounterNr = reader.nextInt();
new K8055N().ResetCounter(CounterNr);

ReadCounter

Syntax
int ReadCounter(int CounterNr);

Parameter
CounterNr: Value 1 or 2, which corresponds to the counter to be read.

Result
int: The content of the 32 bit pulse counter.

Description
The function returns the status of the selected 32 bit pulse counter.
The counter number 1 counts the pulses fed to the input I1 and the counter number 2
counts the pulses fed to the input I2.

Example
System.out.println("Enter counter to read [1..2].");
CounterNr = reader.nextInt();
Data = new K8055N().ReadCounter(CounterNr);
System.out.println("Counter "+CounterNr+" value is: "+Data);

SetCounterDebounceTime

Syntax
void SetCounterDebounceTime(int CounterNr, int DebounceTime);

Parameter
CounterNr: Value 1 or 2, which corresponds to the counter to be set.
DebounceTime: Debounce time for the pulse counter.

The DebounceTime value corresponds to the debounce time in milliseconds (ms) to be set
for the pulse counter. Debounce time value may vary between 0 and 5000.

Description
The counter inputs are debounced in the software to prevent false triggering when
mechanical switches or relay inputs are used. The debounce time is equal for both falling
and rising edges. The default debounce time is 2ms. This means the counter input must
be stable for at least 2ms before it is recognised, giving the maximum count rate of about
200 counts per second.
If the debounce time is set to 0, then the maximum counting rate is about 2000 counts per
second.

Example
System.out.println("Enter counter to set debounce time [1..2].");
CounterNr = reader.nextInt();
System.out.println("Enter debounce time in milliseconds [0..5000].");
int DebounceTime = reader.nextInt();
new K8055N().SetCounterDebounceTime(CounterNr, DebounceTime);

Version

Syntax
int Version();

Result
int: A 32 bit integer where the DLL version (4 digits) is represented. Each byte is one
digit.

Description
The DLL version info is read.

Example
int ver = new K8055N().Version();
System.out.println("DLL Version: "+(ver >> 24)+"."+((ver >> 16) &
0xFF)+"."+((ver >> 8) & 0xFF)+"."+(ver & 0xFF));

ReadBackDigitalOut

Syntax
int ReadBackDigitalOut();

Result
int: Value between 0 and 255 that is sent to the digital output port.

Description
The byte sent to the digital output port is read back.

Example
Data = new K8055N().ReadBackDigitalOut();;
System.out.println("Digital output data = "+Data);

ReadIBackAnalogOut

Syntax
void ReadBackAnalogOut(int[] Buffer);

Parameter
Buffer: Pointer to an array of two 32-bit integers where the data will be read.

Description
The values of all two Digital-to-Analogue converters are read back to an array of 32-bit
integers.

Example

new K8055N().ReadBackAnalogOut(DataOut);
System.out.println("Analog Ch1 = "+DataOut[0]);
System.out.println("Analog Ch2 = "+DataOut[1]);

SetPWM

Note: This function is not compatible with the K8055 card.

Syntax
void SetPWM(int Channel, int Data, int Freq);

Parameters
Channel: The PWM output channel 1 or 2.

Data: Value between 0 and 255 which is to be sent to the PWM output of the card. The
duty cycle of the PWM output corresponds to the data value: 0 = 0%, 255 = 100% duty
cycle.

Freq: The PWM frequency:
1: 2929.68 Hz
2: 11718.75 Hz
3: 46875 Hz

Description
Sets the status of one PWM output.

Example
System.out.println("Enter PWM channel to set [1..2].");
Channel = reader.nextInt();
System.out.println("Enter PWM duty cycle value [0..255].");
Data = reader.nextInt();
System.out.println("Select PWM frequency [1: 2929.68 Hz, 2: 11718.75 Hz, 3:
46875 Hz].");
int Freq = reader.nextInt();
new K8055N().SetPWM(Channel, Data, Freq);

