

UNISONIC TECHNOLOGIES CO., LTD

CD4066

QUAD BILATERAL SWITCH

DESCRIPTION

The UTC **CD4066** is a quad bilateral switch which can be applied for switching of analog signals and digital signals. When control input CONT is set to "H" level, the impedance between input and output of the switch becomes low and when it is set to "L" level, the impedance becomes high. It has a much lower "ON" resistance, and "ON" resistance is relatively constant over the input-signal range.

FEATURES

- * 15V Digital or ±7.5V Peak-to-Peak Switching
- * 85-Ω Typical On-State Resistance for 15V Operation
- * High noise immunity 0.45 V_{DD} (typ.)
- * Matched "ON" resistance ΔR_{ON} =5 Ω (typ.) over 15V signal input
- * High degree linearity 0.1% distortion (typ.)
- @ f_{IS} =1kHz, V_{IS} =5 V_{P-P} , V_{DD} - V_{SS} =5V, R_L =10k Ω
- * Extremely low "OFF" 0.1nA (typ.) switch leakage: @ V_{DD}-V_{SS}=10V, T_A=25°C
- * Extremely high control input impedance $10^{12}\Omega$ (typ.)
- * Frequency response, switch "ON" 40 MHz (typ.)

ORDERING INFORMATION

Ordering Number		Deekees	Decking		
Lead Free	Halogen Free	Раскаде	Packing		
CD4066L-D14-T	CD4066G-D14-T	DIP-14	Tube		

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	IN/OUT	Signal IN/OUT A
2	OUT/IN	Signal OUT/IN A
3	OUT/IN	Signal OUT/IN B
4	IN/OUT	Signal IN/OUT B
5	CONTROL B	CONTROL B
6	CONTROL C	CONTROL C
7	V _{SS}	Ground
8	IN/OUT	Signal IN/OUT C
9	OUT/IN	Signal OUT/IN C
10	OUT/IN	Signal OUT/IN D
11	IN/OUT	Signal IN/OUT D
12	CONTROL D	CONTROL D
13	CONTROL A	CONTROL A
14	V _{DD}	Power supply

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

■ ABSOLUTE MAXIMUM RATING (V_{SS}=0V unless otherwise specified.)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD}	-0.5~+18	V
Input Voltage	V _{IN}	-0.5~ V _{CC} +0.5	V
Power Dissipation	P _D	700	mW
Storage Temperature	T _{STG}	-65~+150	°C

■ **RECOMMENDED OPERATING CONDITIONS** (V_{SS}=0V unless otherwise specified.)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD}	3~15	V
Input Voltage	V _{IN}	0~V _{DD}	V
Operating Temperature	T _A	-40~+85	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ DC ELECTRICAL CHARACTERISTICS (T_A=+25°C, V_{SS}=0V unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
			V _{DD} =5V		0.01	1.0		
Quiescent Device Current	I _{DD}	V _{IN} =V _{DD}	V _{DD} =10V		0.01	2.0	μA	
			V _{DD} =15V		0.01	4.0		
SINGAL INPUTS AND OUTPUTS								
	R _{on}	$R_L=10k\Omega\sim(V_{DD}-V_{SS}/2),$	V _{DD} =5V		240	1050	Ω	
"ON" Resistance			V _{DD} =10V		120	400		
		VCON-VDD,VSS~VDD	V _{DD} =15V		80	240		
∆"ON" Resistance Between		$R_L=10k\Omega \sim (V_{DD}-V_{SS}/2),$	V _{DD} =10V		10		0	
Any 2 of 4 Switches	ΔR_{ON}	V _{CC} =V _{DD} , V _{IS} =V _{SS} ~V _{DD}	V _{DD} =15V		5		Ω	
Input or Output Leakage Switch "OFF"	l _{is}	V _{CON} =0			±0.1	±50	nA	
CONTROL INPUTS								
	VILC	VIS=V SS and VDD,	V _{DD} =5V		2.25	1.5		
LOW Level Input Voltage		$V_{OS}=V_{DD}$ and V_{SS} ,	V _{DD} =10V		4.5	3.0	V	
		I _{IS} =±10μA	V _{DD} =15V		6.75	4.0		
	V _{IHC}	V _{DD} =5V		3.5	2.75			
HIGH Level Input Voltage		V _{DD} =10V (Note 5)		7.0	5.5		V	
		V _{DD} =15V		11.0	8.25			
Input Current	I _{IN}	$V_{DD}-V_{SS}=15V, V_{DD}\geq V_{IS}\geq V_{SS}$			+10-5	±0.3		
		V _{DD} ≥V _{CON} ≥V _{SS}			±10*		μΑ	

■ AC ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, t_R=t_F=20nS \text{ and } V_{SS}=0V, \text{ unless otherwise specified})$ (Note 1)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	t _{PHL,} t _{PLH}		V _{DD} =5V		25	55	ns
Propagation Delay Time Signal		$V_{CON} = V_{DD}, C_L = 5pF,$	V _{DD} =10V		15	35	ns
		RL=200K12 (FIG. 1)	V _{DD} =15V		10	25	ns
Propagation Delay Time	t _{PZH} , t _{PZL}	R _L =1kΩ, C _L =50pF, (Fig. 2, 3)	V _{DD} =5V			125	ns
Control Input to Signal			V _{DD} =10V			60	ns
Output High Impedance to Logical Level			V _{DD} =15V			50	ns
Propagation Delay Time			V _{DD} =5V			125	ns
Control Input to Signal	t _{PHZ,} t _{PLZ}	$R_L=1K\Omega, C_L=50pF,$	V _{DD} =10V			60	ns
Output Logical Level to High Impedance		(Fig. 2, 3)	V _{DD} =15V			50	ns
Sine Wave Distortion		$V_{CON}=V_{DD}=5V, V_{SS}=-5$	δV , $R_L=10k\Omega$,		0 1		%
		V _{IS} =5V _{p-p} , f=1kHz (Fig	. 4)		0.1		70
Frequency Response-Switch "ON"		$V_{CON}=V_{DD}=5V, V_{SS}=-5V, R_{L}=1k\Omega,$			40		
(Frequency at -3dB)		$20 \text{ Log}_{10}(V_{OS}/V_{IS})=-3dI$	$20 \text{ Log}_{10}(\text{V}_{\text{OS}}/\text{V}_{\text{IS}})=-3\text{dB},$				MHz
		V _{IS} =5.0V _{p-p} (Fig. 4)					
Feedthrough - Switch "OFF"		$V_{DD}=5.0V, V_{CC}=V_{SS}=-5.0V,$ $R_{L}=1k\Omega, V_{IS}=5.0V_{p-p},$ 20 Log $\omega(V_{CC})V_{IS}=-50dB$ (Fig. 4)			4 05		N 41 1-
(Frequency at -50dB)					1.25		MHZ
		$20 \ 10910(0.0570) = -300$	(1 ig, 4)		0.9		
Crosstalk Between Any Two Switches		$v_{DD} = v_{CON(A)} = 5.0V, R_L = 1802,$					MЦт
(Frequency at -50dB)		$20 \text{ Log}_{10}(V_{OS(B)}/V_{IS(A)})=$	$S = V_{CON(B)} = 5.0V, V_{IS(A)} = 5.0V_{p-p},$ Log ₁₀ (V _{OS(B)} /V _{IS(A)})=-50dB(Fig. 5)				
		$V_{DD}=10V, R_{L}=10k\Omega, R_{IN}=1k\Omega,$ $V_{CC}=10V \text{ Square Wave,}$ $C_{L}=50pF (Fig. 6)$		150			
Crosstalk. Control Input to Signal Output					150	n	mV₽-
, ,							Р
		$R_L=1k\Omega, C_L=50pF,$	V _{DD} =5V		6		MHz
Maximum Control Input		$V_{OS(f)}=\frac{1}{2}V_{OS}(1kHz)$	V _{DD} =10V		8		MHz
		(Fig. 7)	V _{DD} =15V		8.5		MHz
Signal Input Capacitance	CIS				8.0		pF
Signal Output Capacitance	C _{OS}	V _{DD} =10V			8.0		pF
Feedthrough Capacitance	CIOS	V _{CON} =0V			0.5		pF
Control Input Capacitance	CIN				5.0	7.5	pF

Notes: 1. AC Parameters are guaranteed by DC correlated testing.

- 2. These devices should not be connected to circuits with the power "ON".
- 3. In all cases, there is approximately 5 pF of probe and jig capacitance in the output; however, this capacitance is included in C_L wherever it is specified.
- 4. V_{IS} is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_{CON} is the voltage at the control input.
- 5. Conditions for VIHC:
 - a) V_{IS}=V_{DD}, I_{OS}=standard B series I_{OH}
 - b) $V_{\text{IS}}\text{=}0V,$ $I_{\text{OL}}\text{=}$ standard B series I_{OL}

SPECIAL CONSIDERATION

Using continuously under heavy loads may cause UTC **CD4066** to decrease in the reliability even if the operating conditions are within the absolute maximum ratings and the operating ranges.

In applications where separate power sources are used to drive V_{DD} and the signal input, the V_{DD} current capability should exceed V_{DD}/R_L . This provision avoids any permanent current flow or clamp action of the V_{DD} supply when power is applied or removed from UTC **CD4066**.

AC TEST CIRCUIT AND SWITCHING TIME WAVEFORMS

Fig. 1 $t_{\text{PHL}}, t_{\text{PLH}}$ Propagation Delay Time Signal Input to Signal Output

Fig. 2 $\, t_{\text{PZH}}, \, t_{\text{PHZ}} \, \text{Propagation Delay Time Control to Signal Output}$

Fig. 3 t_{PZL}, t_{PLZ} Propagation Delay Time Control to Signal Output

■ AC TEST CIRCUIT AND SWITCHING TIME WAVEFORMS(Cont.)

 $V_{\text{CON}}{=}V_{\text{DD}}$ for distortion and frequency response tests $V_{\text{CON}}{=}V_{\text{SS}}$ for feedthrough test

Fig. 4 Sine Wave Distortion, Frequency Response and Feedthrough

Fig. 5 Crosstalk Between Any Two Switches

Fig. 6 Crosstalk: Control Input to Signal Output

■ AC TEST CIRCUIT AND SWITCHING TIME WAVEFORMS(Cont.)

Fig. 7 Maximum Control Input Frequency

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

